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Abstract
Tumors and cancers are cells with accelerated cell divisions that are masses
and are worldwide one of the most common contributors to death. Malignant
Pleural Mesothelioma (MPM) is an aggressive lung cancer and is caused by
exposure to asbestos. Late-state patients are treated with non-surgical treat-
ments like radiation, chemotherapy, targeted or immunotherapies. In this study
two state-of-the-art Artificial intelligence models are trained and evaluated with
three experiments on CT scans of patients with MPM. To get better metrics
for determining tumor sizes over time, predict survival rate and possibly save a
patient from a lot of suffering, this study analysed whether CT scans had predic-
tive values for survival. Three experiments have been conducted. The whole CT
scan, the segmented lungs from the whole CT scan and the segmented abnor-
malities from the segmented lungs were pre-processed and trained on Residual
Networks and 3D CNNs using data augmentation operations, all in the same
way. The total volume per CT scan was calculated. The result shows that the
Residual Network with 6 filters for the first convolutional layer, has shown the
best performance on the test set, slightly better than a random classifier with
(AUC = 0.549, p = 0.047) 55% area under curve of the receiver operating char-
acteristic and an validation accuracy of 64%, performing better than all other
models on the various experiments. Although, a weak negative correlation (r =
-0.199, p < 0.001) has been found between the difference in days between death
date minus scan date and the volume of abnormalities in mm3. Hence, based
on the experiments conducted in this study, can be determined that CT scans
of patients with MPM, do not show any predictive values for survival with the
conducted methods.

Keywords: Convolutional Neural Network, CT scans, Lung segmentation,
Malignant Pleural Mesothelioma, Residual Network, Survival prediction.
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1 List of Abbreviations
Various abbreviations are used throughout this study. The following table shows
the explanation of each abbreviation with the corresponding page where the ab-
breviation is used for the first time.

Abbreviation Explanation Page
AI Artificial Intelligence 6
AUC Area Under Curve of the Re-

ceiver Operating Characteristic
16

CT Computed Tomography 5
FPR False positive rate 18
MPM Malignant Pleural Mesothelioma 5
NaN Not a number 21
ResNet Residual Network 10
ROC Receiver Operating Characteris-

tic
16

TPR True positive rate 18
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2 Introduction
Tumors and cancers are cells with accelerated cell divisions that are masses and
are worldwide one of the most common contributors to death (Ferlay et al.,
2020). The term cancer covers a variety of malignant tumors, each with various
subcategories, since cancer can originate in any type of cell (Cooper & Hausman,
2000). For example, there are various forms of lung, breast and brain tumors.
These various subcategories of tumors can come in both benign and malignant
forms, whereas cancer is the malignant form.

Malignant Pleural Mesothelioma (MPM) is an aggressive lung cancer and is
caused by exposure to asbestos. After inhalation, asbestos fibers embed in the
pleura of the lungs and cause inflammations and scarring (Manning et al., 2002).
These inflammations and scarrings could lead to mesothelioma tumors, with a
latency period of around 40 years between the exposure of the asbestos fibers
and symptoms occurring (Bibby et al., 2016).

MPM is usually diagnosed through multiple tests, scans and biopsies. Once
the disease is diagnosed, it is often treated with chemotherapy, surgery, radi-
ation therapy and/or immunotherapy. However, surgical treatment is omitted
if a patient has late-stage disease. These tumors are treated with non-surgical
treatments like radiation, chemotherapy, targeted, or immunotherapies. The
prognosis of a patient varies depending on their individual case, since the bi-
ological behavior of mesothelioma is unpredictable (Opitz & Weder, 2018). In
addition to patients’ individual risk factors, the lack of correlation between clin-
ical and pathological staging makes it difficult to allocate the best treatment for
each individual case (Opitz & Weder, 2018).

Monitoring radiographic changes is crucial to determine therapy response of
tumors over time. Pass et al. (1997), Frauenfelder et al. (2011), Gill et al.
(2012) and Rusch et al. (2016) found that measurement of tumor volume as-
sessed on Computed Tomography (CT) scans can predict treatment outcome.
Clinical response assessment criteria, such as RECIST, analyze follow-up imag-
ing using simple size-based measurements, such as the axial diameter of tumors
(Eisenhauer et al., 2009).

Quantitatively assessing MPM tumor burden showed prognostic significance in
tumor volume measurement (Murphy & Gill, 2017). These measurements are
good prognostic metrics of treatment response (Plathow et al., 2008). Mur-
phy & Gill (2017) has shown that it is useful to compare these measurements
to RECIST and Modified RECIST (mRECIST) (Lencioni & Llovet, 2010) in
patients undergoing chemotherapy and tumor volume measurement on CT to
assess treatment response. RECIST determines the longest diameter of the tu-
mor in several CT scans at the same location by a radiologist in order to monitor
the growth. However, RECIST is suboptimal for MPM, since there are several
ways to determine a diameter (Figure 1), which results into higher inter- and
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intra-observer variability. mRECIST are relatively new guidelines to circumvent
this problem (Tsao et al., 2011), but suffers from the same problems, although
less. Determining the total volume is more accurate, but labor-intensive. By
automatically segmenting the total tumor volume, the change in tumor volume
can be determined in a cost-effective and reproducible way (Tsao et al., 2011).

Liu et al. (2010) assessed this treatment response in patients with MPM by
measuring tumor volume on CT before and after therapy, which suggested that
there was a significant association between the reduction in tumor volume after
treatment and improved survival. Frauenfelder et al. (2011) found that RE-
CIST is a less reliable measure of response to chemotherapy and a predictor of
outcomes than measuring tumor volume on CT scans.

Figure 1: Multiple ways to track growth of tumor through diameter, total segmen-
tation would be more accurate (Tsao et al., 2011)

Artificial Intelligence (AI) has had a major impact on medical imaging as ma-
chines keep getting better at representing and interpreting complex data, which
allows for a quantitative assessment of radiographic tumor characteristics. In
particular, Machine Learning and Deep Learning models are becoming widely
used models in medical image-recognition tasks. These models are able to match
and even surpass humans in task-specific applications (Hosny et al., 2018).

State-of-the-art models on predicting survival of the patient are amongst others
based on Convolutional Neural Networks (CNN). These networks could auto-
matically extract imaging features and identify nonlinear relationships in com-
plex data (Xu et al., 2019). The research question investigated in this study
is: To what extent can the survival rate of a patient diagnosed with Malignant
Pleural Mesothelioma be predicted on the basis of CT scans?

The rest of this study is organized as follows. First, the objectives and relevance
of the study are described. Second, overall introductions about Convolutional
Neural Networks and Residual Neural Networks are given. Third, the methods
and experiments to classify whether a patient lives for another year or not are
described, followed by the results of testing. Finally, discussions in addition
with recommendations for future work and a conclusion are presented.
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3 Objective and relevance of the study
Chemotherapy and immunotherapy are tough for patients suffering from Malig-
nant Pleural Mesothelioma. Investigating whether changes in the volume of the
tumor in CT scans correlate with the survival of a patient can save a patient
a lot of suffering. Instead of tracking growth of tumor through diameter, total
segmentation of the tumor volume would be more accurate (Tsao et al., 2011).
Segmentation of the tumor can potentially improve the performance of predict-
ing survival rate, thus inclusion and evaluation of this segmentation plays an
important role in the investigation of this correlation.

3.1 Scientific relevance:
Current literature assessed the change in tumor volume by diameter in different
CT scans, but little to no research is performed on the change in tumor volume
based on the total volume of the lungs or abnormalities, training an AI model
with this data and then having an AI model automatically predict survival for
each patient with various CT scans. The reason for this study is to narrow
this gap and to get better metrics for determining tumor sizes over time and
predicting survival based on this data. The results of this study can provide
insight into whether the change in tumor volume correlates with the survival
rate of a patient.

3.2 Social/Societal relevance:
If better estimates can be made of the patient’s survival, empowerment of the
doctors’ and the patients’ therapy choices will be made (therapy is tough on
patients). This could lead to the avoidance of unnecessary suffering for the
patient, while the patient can be treated in a more cost-effective way.
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4 Theoretical framework

4.1 Convolutional Neural Networks (CNN)
A regular CNN is a neural network and typically consists of single or multi-
ple layers which can often be subdivided into input layers, convolution layers,
pooling layers, fully-connected layers and an output layer. As figure 2 shows,
a simple CNN for classification has two parts. In the first part features are
extracted and thereafter either classification or regression tasks are carried out.

Figure 2: Block diagram of a simple CNN (Phung & Rhee, 2018)

4.1.1 Feature extraction

The feature extraction part of a CNN always consists of an input layer and often
consists of multiple convolutional and pooling layers. For volumetric data the
input layer of a CNN consists of the matrix with voxels of the image as input.
The shape of this input is specified by a fixed size, where the images may need
to be resized accordingly before being fed into the network. Once these images
are fed into the network, the following layers are part of the feature extraction:

1. Convolutional layers
The most important components of a CNN architecture are the convo-
lutional layers. Linear and nonlinear combinations are combined, i.e.
convolutional operations (see figure 3) and activation functions. These
operations are computed using kernel filters with the same dimension as
the input image but with a smaller size, resulting in feature maps. Fea-
ture maps are results of estimations of the dot product between weights
and kernel filters of each step the filter makes over the entire input image
(Singh et al., 2020).
The most common activation functions are ReLU and Tanh and are ap-
plied directly to the feature maps. The main difference between these
activation functions is that ReLU returns 0 in case the input value is neg-
ative, otherwise the value is returned. Tanh in contrast takes any real
value as input and returns values from -1 to 1. Hence larger input values
are closer to an output of 1, while smaller input values are closer to an
output of -1.
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Figure 3: Example of a convolutional operation (Singh et al., 2020)

2. Pooling layers
Pooling layers are layers which are often added after each convolutional
layer. Specifically, after the application of the activation function on the
feature map which is returned by the convolutional layer. It is basically
down sampling of an image (Sultana et al., 2018). The size of the pooling
filter is smaller than the size of the feature map, hence the most used size
is 2x2. The most common pooling operations are:

(a) Max Pooling The maximum pixel value of the feature map is selected,
see figure 4a.

(b) Average Pooling The average pixel value of the feature map is calcu-
lated, see figure 4b.

(a) Max pooling (b) Average pooling

Figure 4: Most common pooling operations

4.1.2 Classification

After feature extraction, the features are weighted and combined in fully con-
nected or dense layers.

1. Fully connected layers
Fully connected or dense layers are the last component of the CNN archi-
tecture and are connected to all the information acquired in the previous
layers.

2. Output layer
The output layer of a CNN with a classification task often has either
Softmax or Sigmoid as an activation function. The softmax is used for a
multi-class classification task (sum of all probabilities has to be 1), while
the sigmoid is used for binary classification tasks.
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4.2 Residual Neural Networks (ResNet)
ResNets have shown impressive performance on image classification tasks (Bello
et al., 2021), hence these ResNets comprise of multiple Residual Units as dis-
played in figure 5. While a typical ResNet also consists of multiple convolution
layers, it has the choice of skipping connections, which enables identity mapping
(He et al., 2016).

Figure 5: Residual unit proposed by He et al. (2016)

As shown in figure 6 there are various usages in different orders of Residual
units which can be tested. However, the principle stays the same. Figure 6a
shows the original ResNet, while figures 6b, 6c, 6d and 6e show additions
proposed by He et al. (2016).

Figure 6: Various usages of Residual units proposed by He et al. (2016)

The identity mappings obtained from the convolutional layers are added to the
information which is passed through the skip connection. Hence, by relying on
the skip connections direct identity mappings can be learned. After the
addition of the identity mappings and the information which is passed through
the skip connection, it could be passed through the activation function ReLu
or as proposed in figures 6c, 6d and 6e the activation function could be used in
the indirect mapping.
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5 Methods

5.1 Dataset
The dataset used in this study, consisted of 2347 CT scans of advanced stage Ma-
lignant Pleural Mesothelioma patients undergoing immunotherapy or chemother-
apy. These CT scans were collected at the Netherlands Cancer Institute (NKI,
Amsterdam), but acquisition was at hospitals throughout the Netherlands. Each
patient’s CT scan at the time of diagnosis as well as their follow up CT scans
with dimensions 512 x 512 x slices were included (i.e. height x width x depth).
CT scans of patients that are still alive were also included to prevent a bias
(consisting of only patients which passed away) and each follow up scan with
the biggest file size was chosen, i.e. with the most slices (depth).

The dataset was split in a train, validation and test set. However, since both
CT scans at time of diagnosis as well as their follow up CT scans were included,
the split was based on the number of patients (357), to prevent that one pa-
tient’s CT scans were in multiple sets and guarantee the independence of each
set. The train set comprised 249 patients with 1606 CT scans, whereas the
validation comprised 53 patients with 350 CT scans and the test set comprised
55 patients with 391 CT scans.

5.2 Labels and expected output
Besides the dataset of CT scans, a dataset of each patient’s diagnosis date, ther-
apy start date and end date was provided by the Netherlands Cancer Institute.
The subtraction of the patient’s therapy start date from the scan’s date led to
the labelling of each scan. A treshold of one year has been set to obtain a 50/50
distributed soft labeled data. Patients alive, with an end date in June 2021,
were labeled with a soft label (labels from 0 up to 1) of at least 0.5. CT scans
with a difference lower than 182 days were labeled as 0, a difference between
182 and 548 days were labeled with soft labels in the range of [0,1], whereas CT
scans with a difference greater than 548 days were labeled with label 1.

In this study survival is defined as whether the patient lives for another year or
not. Hence the output was rounded to 1 if it was greater than 0.5 and rounded
to 0 if it was lower than 0.5. This cutoff was based on the soft labeling process,
where patients who were still alive (end date in June 2021) and patients who
lived longer than a year (difference greater than 365 days) were labeled with at
least 0.5.

5.3 State-of-the-art models and loss function
This study evaluated two state-of-the-art models, namely a 3D Convolutional
Neural Network and a Residual Network. To learn presentations from data
which contain volume, 3D CNNs are powerful networks to use for classifcation
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tasks (Zunair et al., 2020). The original Residual Network is a 2D model, but
the one used in this study is a 3D implementation.

5.3.1 3D Convolutional Neural Network

A specific form of a 3D CNN proposed by (Zunair et al., 2020) is a 3D CNN
consisting of 17 several layers such as 3D convolutional layers, max pooling
layers, batch normalization layers and a fully connected layer (figure 7). Both
the 17 layer deep 3D CNN as well as the small additions made model were
evaluated.

Figure 7: 3D CNN with 17 layers proposed by (Zunair et al., 2020)

5.3.2 Residual Network (ResNet)

ResNet is proposed by (He et al., 2016) and is evaluated through hyperparameter
tuning, since every problem leads to different implementations of this model,
specifically different number of filters. This model is trained and evaluated
with several number of filters, specifically with 2, 4 and 6 filters for the first
convolutional layer, with an increase of a multiplication of 2 per convolutional
block.

5.3.3 Loss function

The loss function used for all models is binary cross-entropy with activation
function Sigmoid. Hence the models were trained with 250 epochs and a pa-
tience of 50 epochs monitoring validation loss. Individual learning rates are
automatically computed for different parameters using the Adam optimizer for
stochastic optimization.

Outputs generated by the neural network indicate the probability of belong-
ing to one label. The image is passed through the convolutional layers and is
multiplied with the kernel filters, i.e. forward propagation. Backpropagation in
contrast, explained by Werbos (1990), is an algorithm where the loss function’s
partial derivatives are calculated for each trainable weight of the neural network.
These partial derivatives iteratively adjust the trainable weights to result in a
lower loss model (Ho & Wookey, 2019).
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5.4 Experiments and image pre-processing
The original CT scans included were scans with dimension 512 x 512 x the most
slices for that date. Figure 8 displays an example of a 512x512 slice.

Figure 8: Example of a 512x512 slice (anonymized data)

All CT scans consisted of a Hounsfield scale, which is a quantitative scale used
for describing radiodensity. First, an Hounsfield Unit treshold window of [-
1024, 3072] was set to normalize all the values between 0 and 1. Thereafter
the CT scan was cropped to ignore all the irrelevant data. Due to memory
limitations the CT scans were resized to 192x192x96. Although not every CT
scan had a height and width of 192 and a depth of 96, this requirement was
met by using padding, i.e. added spaces/slices which contained only zero values.

The following three experiments were evaluated with the previously introduced
state-of-the-art models.

5.4.1 Experiment 1: Whole CT scan

Figure 9a displays the cropped and resized 192x192 slice of the example showed
in figure 8. Once the pre-processing was done, the models were trained using
generators to reduce the amount of data which had to be loaded at once. Due
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to memory limitations, these generators were trained with a maximum batch
size of 8 (number of training examples used in one iteration). Only the training
set was trained using data augmentation operations such as flipping the image,
i.e. figure 9b and rotating it randomly in a range of [-20◦, 20◦], i.e. figure 9c.

(a) Resized and cropped
192x192 slice

(b) Data augmentation:
flipping whole CT

(c) Data augmentation:
rotation whole CT

Figure 9: Pre-processing and data augmentation whole CT scan

5.4.2 Experiment 2: Lungs including abnormalities

This experiment mainly focused on automatically segmenting the lungs includ-
ing the abnormalities to train the two state-of-the-art models with. U-net(R231)
proposed by Johannes et al. (2020) was used to segment the lungmask for each
CT scan. Once the lungmask was segmented, as seen in figure 10a, the two
lungs had different values, 0 and 1 for the right and left lung, respectively. In
order to obtain the original lungs including the abnormalities, the two lungs
had to be the same value, i.e. see figure 10b. After the lungs were brought to
one value, the lungmask was multiplied by the original CT scan to obtain the
original lungs including the abnormalities, i.e. see figure 10c.

(a) Lungmask of lungs figure 8 (b) Lungmask same value
lungs inclusive abnormalities

(c) Lungmask multiplied by the
original ct

Figure 10: Pre-processing lungs
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The same procedure as in experiment 1 is applied to crop and resize the lungs
including the abnormalities (figure 11a) and thereafter to train the models
using the same data augmentation operations as previously introduced, i.e. see
figures 11b and 11c.

(a) Cropped and resized lungs (b) Data augmentation:
flipping lungs

(c) Data augmentation:
rotation lungs

Figure 11: Pre-processing and data augmentation of the lungs

5.4.3 Experiment 3: Abnormalities

This part of the study focused primarily on calculating the difference between
the lungs including the abnormalities and the healthy lungs (without the abnor-
malities). This was done by subtracting the healthy lungs from the lungmask
which is previously introduced. To segment the healthy parts only, SegCaps
proposed by LaLonde & Bagci (2018) was used. Once the healthy parts were
segmented, i.e. see figure 12b, the healthy parts were subtracted from the lung-
mask which contained the healthy parts (lungs) as well as the abnormalities.
This led to a segmentation of the abnormalities only, as shown in figure 12c.

(a) Lungmask multiplied by
the original ct

(b) Healthy lungs obtained
through SegCaps

(c) Abnormalities

Figure 12: Pre-processing abnormalities
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The same procedure as in experiments 1 and 2 is applied to crop and resize
the abnormalities (figure 13a) and thereafter to train the models using the
same data augmentation operations, see figures 13b and 13c.

(a) Cropped and resized
abnormalities

(b) Data augmentation:
flipping abnormalities

(c) Data augmentation:
rotation abnormalities

Figure 13: Pre-processing and data augmentation abnormalities

5.5 Experiments evaluation and used hard/software
All models were evaluated using the same pre-processing and data
augmentation operations to be able to evaluate their performance fairly.
Evaluation was based on the validation loss, validation accuracy, Receiver
Operating Characteristic (ROC), Area Under Curve (AUC) of the Receiver
Operating Characteristic and a p-value (statistically significant if p < 0.05),
sensitivity and specificity, all evaluated using the test set except the first two.
Hence, the formulas of sensitivity and specificity are given in equation 1.

Sensitivity (TPR): TP
TP+FN Specificity (FPR): TN

TN+FP (1)
where:
TP: true positive TN: true negative FP: false positive FN: false negative

Making use of the GPU Quadro RTX 8000 with 48 GB memory provided by the
Netherlands Cancer Institute, all models were trained and evaluated.

5.6 Post-processing
Investigation whether the volume of the abnormalities were generally decreasing,
the total volume of the segmented abnormalities (figure 12c) were multiplied
with the space directions of the CT scans. Since CT scans had varying slice
thicknesses, this multiplication led to a total volume per CT scan which could
be evaluated. Examination of the generated lungmask, i.e. figure 10a and
SegCaps, i.e. figure 12b, has shown that various CT scans were not segmented.
These lungmasks and SegCaps contained NaN values, which resulted in NaN
losses during training. Hence, these CT scans were excluded.
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6 Results
The difference in days between the death date minus scan date (M = 655, SD
= 772) and the volume of abnormalities in mm3 (M = 1018478, SD = 879999)
varied for the total 2347 CT scans used in this study.

6.1 Experiment 1: Whole CT scan
Training and validation losses on the whole CT scans are shown in figure 14.
The ResNets with various filters have shown better performances regarding the
validation losses, see figure 14c, 14d and 14e. The 3D CNNs indicate overfitting,
while the ResNets indicate that it was learning from the data. However, a
validation loss less than 0.4 is not achieved.

(a) 3D CNN - 17 layers (b) 3D CNN - 20 layers (c) ResNet 2 filters

(d) ResNet 4 filters (e) ResNet 6 filters

Figure 14: Whole CT - Loss per epoch

As shown in table 1 the highest achieved validation accuracy was 0.674 with
the ResNet consisting of 6 filters. In addition, the AUC and the p-value are
also shown, which indicates whether almost all cases are predicted under one
class if it is not significant (AUC = 0.513, p = 0.332), followed by a sensitivity
of 0.01 and a specificity of 0.99.
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Networks Val. acc. Sensitivity Specificity AUC p-value
3D CNN - 17 layers 0.663 0.42 0.61 0.496 0.453
3D CNN - 20 layers 0.654 0.40 0.59 0.522 0.229
ResNet 2 filters 0.657 0.18 0.78 0.473 0.186
ResNet 4 filters 0.663 0.42 0.59 0.520 0.258
ResNet 6 filters 0.674 0.01 0.99 0.513 0.332

Table 1: Performance of different networks on whole CT scans

Furthermore the ROC curves of the various networks are shown in figure 15,
which contains the FPRs (False Positive Rate) on the x-axis and the TPRs
(True Positive Rate) on the y axis.

Figure 15: ROC curves whole CT

While random classifiers usually have a straight diagonal line, as shown in
figure 15, no model has statistically outperformed a random classifier.
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6.2 Experiment 2: Lungs including abnormalities
For this experiment the training and validation losses are shown in figure 16.
The two 3D CNNs are again indicating overfitting, while the three other ResNets
have learned from the data, i.e. see figures 16c, 16d and 16e.

(a) 3D CNN - 17 layers (b) 3D CNN - 20 layers (c) ResNet 2 filters

(d) ResNet 4 filters (e) ResNet 6 filters

Figure 16: Lungs - Loss per epoch

The highest achieved validation accuracy is 0.674 with the 3D CNN consisting
of 20 layers, as shown in table 2. However, the AUC is less than the AUC of
the ResNet with 6 filters. The p-value is also not significant, while the p-value
of the ResNet with 6 filters is (AUC = 0.549, p = 0.047). The sensitivity and
specificity of the ResNet with 6 filters are 0.16 and 0.87.

Networks Val. acc. Sensitivity Specificity AUC p-value
3D CNN - 17 layers 0.651 0.07 0.90 0.494 0.420
3D CNN - 20 layers 0.674 0.06 0.96 0.508 0.402
ResNet 2 filters 0.651 0.40 0.57 0.478 0.219
ResNet 4 filters 0.642 0.13 0.90 0.541 0.078
ResNet 6 filters 0.640 0.16 0.87 0.549 0.047

Table 2: Performance of different networks on the segmentation of the lungs

This experiment has shown that only the ResNet with 6 filters performed
better than a random classifier with a statistically significant p-value.
However, it is still very close to a random classifier.
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6.3 Experiment 3: Abnormalities
The training and validation losses of the abnormalities are shown in figure 17.
The 3D CNNs are indicating overfitting again, while the other three ResNets
indicate that learning from the data has been achieved.

(a) 3D CNN - 17 layers (b) 3D CNN - 20 layers (c) ResNet 2 filters

(d) ResNet 4 filters (e) ResNet 6 filters

Figure 17: Abnormalities - Loss per epoch

For this experiment the highest achieved validation accuracy is 0.686 with the
3D CNN consisting of 17 layers, as shown in table 3. However, the AUC is less
than the AUC of the ResNet with 6 filters. The p-value is also higher than the
p-value of the ResNet with 6 filters (AUC = 0.524, p = 0.212). The sensitivity
and specificity of the ResNet with 6 filters are 0.12 and 0.89.

Networks Val. acc. Sensitivity Specificity AUC p-value
3D CNN - 17 layers 0.686 0.35 0.64 0.506 0.419
3D CNN - 20 layers 0.669 0.38 0.62 0.500 0.495
ResNet 2 filters 0.648 0.43 0.54 0.504 0.437
ResNet 4 filters 0.668 0.18 0.79 0.510 0.371
ResNet 6 filters 0.674 0.12 0.89 0.524 0.212

Table 3: Performance of different networks on the segmentation of the abnormalities

No model has shown better performance than a random classifier, since all the
AUCs are fluctuating around the 0.51 and no p-value is significant.
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6.4 Post-processed experiment
The volumes in mm3 of the patients varied in the whole dataset. As figure 18
shows, the volume of the abnormalities of a specific anonymized patient could
first decrease and thereafter increase again.

Figure 18: Volume per date - anonymized patient 0001

However, patients with less than three scans were excluded to calculate the
correlation between the difference in days between death date minus scan date
and the volume of abnormalities in mm3, since patients with two CT scans led
to a correlation of 1 and patients with one CT scan led to a correlation of NaN
.

A weak negative correlation (r = -0.199, p < 0.001) was found between the
difference in days between death date minus scan date and the volume of
abnormalities in mm3.
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7 Discussion
This study analysed whether CT scans had predictive values for survival. Three
experiments have been conducted. The whole CT scan, the segmented lungs
from the whole CT scan and the segmented abnormalities from the segmented
lungs were pre-processed and trained using data augmentation operations, all
in the same way. From there the total volume per CT scan was calculated. The
main research question was: To what extent can the survival rate of a patient
diagnosed with Malignant Pleural Mesothelioma be predicted on the basis of
CT scans?

7.1 Interpretation results
First, the experiment with whole CT scans will be discussed, which showed
better validation loss graphs for the ResNets with 2, 4 and 6 filters, than the
two 3D CNNs. However, low AUC scores were achieved. This could be due
to irrelevant information available in the whole CT scan for MPM, since the
regions of interest were the abnormalities. The CT scans had to be resized due
to memory limitations to fed the data generator with, which could possibly have
caused loss of details.

The second point of discussion is the experiment with the lungs. For this ex-
periment, the 3D CNNs were outperformed by the ResNets with 2, 4 and 6
filters based on the graphs of validation losses. While the 3D CNN with 20
layers has had a higher validation accuracy, the ResNet with 6 filters performed
better on the sensitivity, specificity, AUC and p-value, indicating not all cases
were predicted under one class. However, the performance is still very close to a
random classifier. One possible reason for this is resizing, since all models were
pre-processed and trained with the same procedures.

Third, the experiment with only the abnormalities will be discussed, which
showed comparable performances on the validation losses as the other two ex-
periments. While the validation accuracy of all models were comparable with
each other, no model statistically outperformed a random classifier. This could
be due to the segmentation of the lungmasks and healthy lungs including the
abnormalities. Some cases showed that no precise segmentations were made
(i.e. segmenting fluid), which led to segmentations of more volume for the ab-
normalities. Resizing could also possibly have caused loss of details.

Fourth, the correlation between the difference in days between death date mi-
nus scan date and the volume of abnormalities in mm3 will be discussed, which
showed a weak negative correlation. This could be due to the inaccurate seg-
mentations, which led to larger total volume of the abnormalities. One other
possible reason could be that the patient’s treatment-response was positively,
which could cause smaller volumes of the abnormalities.
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7.2 Limitations
This study has had several limitations. First, the end date of the patient (date
of death) was not exact. The end date consisted of the last date the radiologists
were told the patient had a CT scan. Thus, after consideration, in this study
the end date served as the death date of the patient. Hence, the soft labels are
also not precise.

Second, the third experiment consisted of the volume of the abnormalities in-
stead of the tumor. Due to absence of expert segmentations of MPM, the model
was limited to all abnormalities. The difference between the lungmask and the
SegCaps model was calculated, which had some limitations regarding the exact
volume of the abnormalities. Since the segmentations of the two models were
not exactly the same (regarding the healthy lungs and the healthy lungs includ-
ing the abnormalities), the difference consisted of the abnormalities, but also for
example of pixels around the edges of the lungs, which were not per definition
abnormalities.

Third, the hypothese was that abnormalities would perform better than the
other two experiments, but in some cases due to inaccurate segmentations, vol-
umes of abnormalities were much bigger than the volumes of previously made
CT scans. In general, it is expected that the volume will descend in the follow-
up CT-scans if the therapy is successful.

Fourth, due to memory limitations, batch sizes equal to 8 were used and resizing
was done before loading the generator instead of resizing during generating.

Fifth, manually inspecting the pre-processed and segmented CT scans was not
done, due to time limitations. Inspecting all the pre-processed and segmented
CT scans, could give an insight if mistakes were made. Mistakes could be that
not every experiment, had for example comparable normalized values and did
not contain any outliers in for example volume of segmentations.

Sixth, due to the time it took to train each model, i.e. approximately 18 hours,
the models could not be trained with a greater number of epochs and for the
ResNets it was not feasible to train with more filters.

Finally, inclusion of all the patient’s CT scans was not feasible, since the last
part of the CT scans were added after all the pre-processing. Due to time lim-
itations and computational power limitations to add and pre-process these CT
scans within a short time, these CT scans were excluded.

7.3 Future perspectives
Future work should be focused on, manually inspecting the pre-processed and
segmented data. Hence, it could prevent the model from performing poorly.
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Also, larger batch sizes with more epochs could potentially improve the perfor-
mance of the models (Narin & Pamuk, 2020). As proposed by (Van Gerwen
et al., 2019), clinical factors could be predictive for longer survival, thus inclu-
sion of these factors could potentially improve the performance of the model.
Furthermore, as stated by (Xu et al., 2019), to capture changes in tumor vol-
ume, follow-up time points are key to predict survival of a patient. One possible
method to obtain better performance is to combine a CNN with a RNN, since
several time points could be combined. The model would still learn, even if
a patient’s CT scan was missed at a certain time point, which is inevitable in
studies like this one (Xu et al., 2019). The change in CT scans over time, could
possibly contain more predictive values than only a CT scan.

8 Conclusion
CT scans of patients with Malignant Pleural Mesothelioma were pre-processed,
trained and evaluated on two state-of-the-art models with three different ex-
periments. All experiments showed that no model statistically outperformed a
random classifier, except one which was slightly better. Patient’s volumes in
mm3 varied in the whole dataset. Hence, a weak negative correlation was found
between the difference in days between death date minus scan date and the
volume of abnormalities in mm3.

Based on the experiments conducted in this study, can be determined that
CT scans of patients with Malignant Pleural Mesothelioma, do not show any
predictive values for survival with the conducted methods.
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